

An Overview of Reachability Indexes on Graphs

Chao Zhang¹, Angela Bonifati², and M. Tamer Özsu¹

¹University of Waterloo

²Lyon 1 University

Graphs are everywhere

One of the fundamental graph processing operations [Sah20]: Reachability Queries

Plain Graphs

Edge-Labeled Graphs

Reachability Query: $Q_r(A, N, (follows \cup worksFor)^*)$ = True

Reachability Indexes

Striking the balance between transitive closure and online traversal

• Two types of reachability indexes

- Plain graphs: plain reachability indexes
- Edge-labeled graphs: path-constrained reachability indexes

1. Plain Reachability Indexes

- a) Tree-Cover Indexes
- b) 2-Hop Indexes
- c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

Plain Reachability Indexes

Indexing technique	Framework	Index type	Input	Dynamic	References
Tree cover	Tree cover	Complete	DAG	No	[Agr89]
Tree+SSPI	Tree cover	Partial	DAG	No	[Che05]
Dual labeling	Tree cover	Complete	DAG	No	[Wan06]
GRIPP	Tree cover	Partial	General Graph	No	[Tri07]
Path-Tree	Tree cover	Complete	DAG	Yes	[Jin08,Jin11]
GRAIL	Tree cover	Partial	DAG	No	[Yil10]
Ferrari	Tree cover	Partial	DAG	No	[Seu13]
DAGGER	Tree cover	Partial	DAG	Yes	[Yil13]
2-Нор	2-Нор	Complete	General Graph	No	[Coh02]
Ralf et al.	2-Нор	Complete	General Graph	Yes	[Sch05]
3-Нор	2-Нор	Complete	DAG	No	[Jin09]
U2-Hop	2-Нор	Complete	DAG	Yes	[Bra10]
Path-Hop	2-Нор	Complete	DAG	No	[Cai10]
TFL	2-Нор	Complete	DAG	No	[Che13]
DL	2-Нор	Complete	General Graph	No	[Jin13]
PLL	2-Нор	Complete	General Graph	No	[Yan13]
TOL	2-Нор	Complete	DAG	Yes	[Zhu14]
DBL	2-Нор	Partial	General Graph	Yes	[Lyu21]
O'Reach	2-Нор	Partial	DAG	No	[Han21]
IP	Approximated TC	Partial	DAG	Yes	[Wei14,Wei18]
BFL	Approximated TC	Partial	DAG	No	[Su17]
HL	-	Complete	DAG	No	[Jin13]
Feline	-	Partial	DAG	No	[Vel14]
Preach	-	Partial	DAG	No	[Mer14]

Complete index: index-only query processing Partial index: index-graph query processing

Three index frameworks:

- Tree cover
- 2-Hop
- Approximated TC

- 1. Plain Reachability Indexes
 - a) Tree-Cover Indexes
 - b) 2-Hop Indexes
 - c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

Interval Labeling

Assign an interval $[a_v, b_v]$ to each vertex v, denoted as \mathcal{L}_v a_v : The lowest postorder number of all the descendants of v b_v : Postorder number of v

Tree Cover Index

Reachability in DAG:

- Interval labeling for the spanning trees in a DAG
- Inheriting intervals due to non-tree edges

[Tar72] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972)

[Agr89] R. Agrawal et al. Efficient Management of Transitive Relationships in Large Data and Knowledge Bases. SIGMOD Conference 1989: 253-26210

Reducing the Number of Intervals

- Bottleneck of Tree-Cover index:
 - A large number of intervals due to non-tree edges
- Bounding the number of intervals
 - GRAIL [Yil10], and Ferrari [Seu13]
 - Partial indexes
 - Querying processing:
 - online search accelerated by leveraging the partial indexes

1. Plain Reachability Indexes

a) Tree-Cover Indexes

b) 2-Hop Indexes

- c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

2-Hop Labeling

Assigning $L(v) = (L_{in}(v), L_{out}(v))$ for each v, such that $\forall u \in L_{in}(v), \exists a \text{ path from } u \text{ to } v$ $\forall w \in L_{out}(v), \exists a \text{ path from } v \text{ to } w$

v	$L_{in}(v)$	$L_{out}(v)$
Α		M , D, C, K
В	M , D, C, B	
С		М
D		
F	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	N
G	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	В
H	D, C	<i>B</i> , <i>G</i>
Ι	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	N, G
J	M, D, C, B, F, I	N
K	A	М
L	A	M, D, C, K
M		
N	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	

2-Hop Labeling

Case 1: $Q(L, M) = True, M \in L_{out}(L)$ Case 2: $Q(M, B) = True, M \in L_{in}(B)$ Case 3: $Q(A, N) = True, L_{out}(A) \cap L_{in}(N) \neq \emptyset$

E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

v	$L_{in}(v)$	$L_{out}(v)$
A		M , D , C , K
В	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	
С		М
D		
F	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	N
G	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	В
Н	D, C	<i>B</i> , <i>G</i>
Ι	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	N, G
J	M, D, C, B, F, I	N
K	A	М
L	A	<i>M</i> , <i>D</i> , <i>C</i> , <i>K</i>
М		
N	<i>M</i> , <i>D</i> , <i>C</i> , <i>B</i>	

Minimum 2-Hop Labeling

- Index size: $\sum_{v \in V} |L_{in}(v)| + |L_{out}(v)|$
- **Minimum** 2-hop labeling: the index with the minimum index size
 - Intuition: maximally compress the transitive closure
- NP-hard problem [Coh02]
- Efficient heuristics for building 2-hop indexes
 - TFL [Che13], PLL [Aki13], DL [Jin13], and TOL [Zhu14]

Labeling 2

v	$L_{in}(v)$	$L_{out}(v)$
S		
и	S	t
t	S	
	v s u t	$\begin{array}{c c} v & L_{in}(v) \\ \hline s & \\ u & s \\ t & s \\ \end{array}$

Smaller

Larger

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

[Zhu14] A. Zhu et al. Reachability queries on large dynamic graphs: a total order approach. SIGMOD Conference 2014: 1323-1334

[[]Che13] J. Cheng et al. TF-Label: a topological-folding labeling scheme for reachability querying in a large graph. SIGMOD Conference 2013: 193-204

[[]Jin13] R. Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)

[[]Aki13] E. Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD Conference 2013: 349-360

1. Plain Reachability Indexes

- a) Tree-Cover Indexes
- b) 2-Hop Indexes
- c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

Rethinking of Transitive Closures

- *out*(*v*):
 - v and all the vertices that are reachable from v
- Observation:
 - If v is reachable from u, $out(v) \subseteq out(u)$
 - Example: *B* is reachable from *C*
- Contrapositive condition:
 - If $out(v) \not\subseteq out(u), v$ is not reachable from u
- Computing approximate *out*(*v*):
 - K-min-wise independent permutation: IP [Wei14]
 - Bloom filter: BFL [Su17]

[Wei14]H. Wei et al. Reachability Querying: An Independent Permutation Labeling Approach. Proc. VLDB Endow. 7(12): 1191-1202 (2014)[Su17]J. Su et al. Reachability Querying: Can It Be Even Faster? IEEE Trans. Know. Data Eng. 29(3): 683-697 (2017)

v	in(v)	out(v)
A	{1}	{1,2,3,4,5,6,7}
В	{1,2,3,4,5,6}	{2,3,6,7}
С	{1,3,5}	{1,2,3,6,7}
D	{1,4,5}	{1,2,3,4,6,7}
F	{1,2,3,4,5,6}	{6,3,7}
Н	{1,3,4,5}	{1,2,3,6,7}
J	{1,2,3,4,5,6}	{3,7}
K	{1,4,5}	{2,3,4,6,7}
L	{1,5}	{1,2,3,4,5,6,7}
М	{1,3,4,5,6}	{2,3,6,7}
N	{1,2,3,4,5,6,7}	{7}

- $Q_r(B,C)$:
 - Index lookup: $out(C) \not\subseteq out(B)$, thus immediately return False
- $Q_r(D,M)$:
 - Index lookup: $out(M) \subseteq out(D)$ and $in(D) \subseteq out(M)$, thus perform guided DFS from D
 - None of the out-neighbors of *D* can reach *M*, return False

- 1. Plain Reachability Indexes
 - a) Tree-Cover Indexes
 - b) 2-Hop Indexes
 - c) Approximated Transitive Closures

2. Path-Constrained Reachability Indexes

- a) Indexes for Alternation-Based Queries
- b) Indexes for Concatenation-Based path constraints
- 3. Open Challenges

Path-Constrained Reachability Queries

- $Q_r(s, t, \alpha), \alpha = (l_1 \cup \cdots \cup l_k)^*$
 - Alternation-based reachability
 - E.g., Q_r(A, N, (worksFor ∪ friendOf)*) = True
- $Q_r(s, t, \alpha), \alpha = (\boldsymbol{l_1} \cdot \dots \cdot \boldsymbol{l_k})^*$
 - Concatenation-based reachability
 - E.g., $Q_r(L, B, (worksFor \cdot friendOf)^*)$ = True
- Indexes are specifically designed for each type

- 1. Plain Reachability Indexes
 - a) Tree-Cover Indexes
 - b) 2-Hop Indexes
 - c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

Sufficient Path-Label Sets (SPLS)

- Two path-label sets from *L* to *M*
 - {worksFor, follows}
 - {worksFor}
- {*worksFor, follows*} is redundant
 - $\{worksFor\} \subset \{worksFor, follows\}$
- SPLSs are minimal sets of all path-label sets from a source to a target

Indexes for Alternation-Based Reachability

Indexing technique	Framework	Index type	Input	Dynamic	References
Jin et al.	Tree cover	Complete	General Graph	No	[Jin10]
Chen et al.	Tree cover	Complete	General Graph	No	[Che21]
Zou et al.	Generalized TC	Complete	General Graph	Yes	[Xu11,Zou14]
Landmark index	Generalized TC	Partial	General Graph	No	[Val17]
P2H+	2-Нор	Complete	General Graph	No	[Pen20]
DLCR	2-Hop	Complete	General Graph	Yes	[Che22]

Three index frameworks:

- Tree cover
- Generalized TC
- 2-Hop

Label-Constrained 2-Hop Labeling

- Intuition of P2H+:
 - Plain reachability is transitive
 - SPLSs are transitive
 - Adding SPLSs into the 2-hop labeling
- $Q_r(A, N, (worksFor \cup friendOf)^*)$:
 - Plain reachability:
 - A can reach B
 - B can reach N
 - Path constraints:
 - SPLSs from A to B contains {worksFor, friendOf}
 - SPLSs from *B* to *N* contains {*worksFor*, *friendOf*}
 - Thus, the answer is True

Dynamic Label Constrained Reachability

- DLCR: an extension of P2H+ to dynamic graphs
- Inserting (u, v) with label l in DLCR:

• Deleting (u, v) with label l in DLCR:

Inserting the reachability from x to v

Deleting the **redundant** reachability from x to v with $\{l, l'\}$

Deleting the reachability from x to v

Inserting the **pruned** reachability from x to v with $\{l, l'\}$

X. Chen et al. DLCR: Efficient Indexing for Label-Constrained Reachability Queries on Large Dynamic Graphs. Proc. VLDB Endow. 15(8): 1645-1657 (2022)

- 1. Plain Reachability Indexes
 - a) Tree-Cover Indexes
 - b) 2-Hop Indexes
 - c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

Minimum Repeats

- Efficiently store path-label sequences
 - Minimum repeats of path-label sequences
- Example:
 - Path: (*L*, *worksFor*, *D*, *friendOf*, *H*, *worksFor*, *G*, *friendOf*, *B*)
 - Minimum repeat: (*worksFor*, *friendOf*)

RLC Index

RLC Index $(k \le 2)$ (*incomplete view*)

v	$L_{in}(v)$	$L_{out}(v)$
Α		(B,(friendOf,worksFor)),
В		
С		(G, (worksFor)),
D		(B, (worksFor)),
F		
G	(B,(friend0f,worksFor)),	(B,(friend0f)),
Н	(<i>L</i> , (worksFor)),	(B, (worksFor, friendOf)),
Ι		(B, (worksFor, friendOf)),
J	(B, (worksFor, friend0f)), (B, (friend0f, worksFor)),	
K		
L		(B,(worksFor,friend0f)), (B,(worksFor)),
М	(L,(follows,worksFor)),	(B,(follows,friend0f)),
N	(B, (worksFor, follows)),	

Example:

- $Q_r(L, J, \alpha), \ \alpha = (worsFor \cdot friendOf)^*$
 - $(B, (worksFor, friendOf)) \in L_{out}(L)$
 - $(B, (worksFor, friendOf)) \in L_{in}(J)$

• True

C. Zhang et al. A Reachability Index for Recursive Label-Concatenated Graph Queries. ICDE 2023: 66-80

- 1. Plain Reachability Indexes
 - a) Tree-Cover Indexes
 - b) 2-Hop Indexes
 - c) Approximated Transitive Closures
- 2. Path-Constrained Reachability Indexes
 - a) Indexes for Alternation-Based Queries
 - b) Indexes for Concatenation-Based Queries
- 3. Open Challenges

An Overview of Main Challenges

- Real-world graphs are
 - large, and
 - fully dynamic
- Plain reachability indexes
 - State-of-the-art indexes can be built efficiently on large graphs
 - Updating indexes is not efficient
- Path-constrained reachability indexes
 - Struggling with both scalability and index updates
 - Indexes for general types of path constraints

References: 1972 - 2013

- [Tar72] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972)
- [Agr89] R. Agrawal et al. Efficient Management of Transitive Relationships in Large Data and Knowledge Bases. SIGMOD Conference 1989: 253-262
- [Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946
- [Che05] L. Chen et al. Stack-based Algorithms for Pattern Matching on DAGs. VLDB 2005: 493-504
- [Sch05] R. Schenkel et al. Efficient creation and incremental maintenance of the HOPI index for complex XML document collections. ICDE 2005: 360-371
- [Wan06] H. Wang et al. Dual Labeling: Answering Graph Reachability Queries in Constant Time. ICDE 2006: 75
- [Tri07] S. Tril et al. Fast and practical indexing and querying of very large graphs. SIGMOD Conference 2007: 845-856
- [Jin08] R. Jin et al. Efficiently answering reachability queries on very large directed graphs. SIGMOD Conference 2008: 595-608
- [Jin09] R. Jin et al. 3-HOP: a high-compression indexing scheme for reachability query. SIGMOD Conference 2009: 813-826
- [Bra10] R. Bramandia et al. Incremental Maintenance of 2-Hop Labeling of Large Graphs. IEEE Trans. Knowl. Data Eng. 22(5): 682-698 (2010)
- [Cai10] J. Cai et al. Path-hop: efficiently indexing large graphs for reachability queries. CIKM 2010: 119-128
- [Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134
- [Yil10] H. Yildirim et al. GRAIL: Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3(1): 276-284 (2010)
- [Jin11] R. Jin et al. Path-tree: An efficient reachability indexing scheme for large directed graphs. ACM Trans. Database Syst. 36(1): 7:1-7:44 (2011)
- [Xu11] K. Xu et al. Answering label-constraint reachability in large graphs. CIKM 2011: 1595-1600
- [Che13] J. Cheng et al. TF-Label: a topological-folding labeling scheme for reachability querying in a large graph. SIGMOD Conference 2013: 193-204
- [Jin13] R. Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)
- [Seu13] S. Seufert et al. FERRARI: Flexible and efficient reachability range assignment for graph indexing. ICDE 2013: 1009-1020
- [Yan13] Y. Yano et al. Fast and scalable reachability queries on graphs by pruned labeling with landmarks and paths. CIKM 2013: 1601-1606
- [Yil13] H. Yildirim et al. DAGGER: A Scalable Index for Reachability Queries in Large Dynamic Graphs. CoRR abs/1301.0977 (2013)

References: 2014 - 2023

- [Zou14] L. Zou et al. Efficient processing of label-constraint reachability queries in large graphs. Inf. Syst. 40: 47-66 (2014)
- [Zhu14] A. Zhu et al. Reachability queries on large dynamic graphs: a total order approach. SIGMOD Conference 2014: 1323-1334
- [Mer14] F. Merz et al. PReaCH: A Fast Lightweight Reachability Index Using Pruning and Contraction Hierarchies. ESA 2014: 701-712
- [Vel14] R. Veloso et al. Reachability Queries in Very Large Graphs: A Fast Refined Online Search Approach. EDBT 2014: 511-522
- [Wei14] H. Wei et al. Reachability Querying: An Independent Permutation Labeling Approach. Proc. VLDB Endow. 7(12): 1191-1202 (2014)
- [Val17] L. Valstar et al. Landmark Indexing for Evaluation of Label-Constrained Reachability Queries. SIGMOD Conference 2017: 345-358
- [Su17] J. Su et al. Reachability Querying: Can It Be Even Faster? IEEE Trans. Know. Data Eng. 29(3): 683-697 (2017)
- [Wei18] H. Wei et al. Reachability querying: an independent permutation labeling approach. VLDB J. 27(1): 1-26 (2018)
- [Pen20] Y. Peng et al. Answering billion-scale label-constrained reachability queries within microsecond. Proc. VLDB Endow. 13(6): 812-825 (2020)
- [Che21] Y. Chen et al. Graph Indexing for Efficient Evaluation of Label-constrained Reachability Queries. ACM Trans. Database Syst. 46(2): 8:1-8:50 (2021)
- [Han21] K. Han et. O'Reach: Even Faster Reachability in Large Graphs. SEA 2021: 13:1-13:24
- [Lyu21] Q. Lyu et al. DBL: Efficient Reachability Queries on Dynamic Graphs. DASFAA (2) 2021: 761-777
- [Che22] X. Chen et al. DLCR: Efficient Indexing for Label-Constrained Reachability Queries on Large Dynamic Graphs. Proc. VLDB Endow. 15(8): 1645-1657 (2022)
- [Zha23] C. Zhang et al. A Reachability Index for Recursive Label-Concatenated Graph Queries. ICDE 2023: 66-80