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Person
External Entity
Account

Money laundering analysis:

Do accounts 14 and 19 have the 
repeated outside-inside money 
transferring pattern? 

PATH out_in AS () -[:debits-]> () -[:credits]-> ()
SELECT *
FROM MATH (s) -/:out_in+/-> (t)
WHERE ID(s) = 14 AND ID(t) = 19

PGQL

An interleaved social and professional network



RLC (recursive label-concatenated) queries

● Path constraints
○ A concatenation of edge labels under the Kleene plus, i.e., (l1, …, lk)

+

● RLC query (s, t, L+), L = (l1, …, lk),  checks
○ whether there is a path from vertex s to vertex t, and

○ whether the edge label sequence of the path matches the path constraint L+

● No constraint on path length
○ Paths selected by RLC query can have an arbitrary length

● Boolean query
○ Returns either True or False
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RLC queries in mainstream graph processing systems

RLC queries cannot be expressed in 

● Cypher of Neo4j (v4.3)

● GSQL of TigerGraph (v3.3)
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RLC queries can be expressed in 

● SPARQL 1.1, supported by Virtuoso, 
Apache Jena, etc

● PGQL of Oracle PGX

● Gremlin, supported by TinkerPop-Enabled 
Graph System, e.g., Amazon Neptune

RLC queries can be expressed in GQL or SQL/PGQ [Deu22]

[Deu22] A. Deutsch et al. Graph Pattern Matching in GQL and SQL/PGQ. SIGMOD Conference 2022: 2246-2258



RLC query processing

● Path semantics 

○ Simple paths: non-repeated vertices or 
edges

○ Arbitrary paths: vertices or edges can 
repeat 

● Building an FA (Finite Automata) based on the 
path constraint

● Query processing: online traversal guided by an 
FA, e.g., BFS guided by an FA

s0 s1start
debits

debits

credits

FA of (debits, credits)+

s2
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RLC query processing

● Problem

○ real-world graphs are large 

● RLC queries often timed out [Bon19]

● Building an index for online RLC queries

○ Fast query processing

○ Efficient index computation and storage

[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138

Music recommendation graph: http://sixdegrees.hu/last.fm/interactive_map.html

Real-world 
graphs are 
like this 👉
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Related works: reachability indexes

Plain reachability indexes

● Queries: checking the existence of a path 
only

● Indexes: Tree Cover, 2-Hop labeling, Dual 
labeling, TFL, TOL, GRAIL, BFL, etc

Label-constrained reachability indexes

● Queries: checking the existence of a path 
and whether the edge-label set of the path 
is a subset of a given edge-label set 

● Indexes: Landmark Index, P2H, etc

Infeasible for RLC queries due to 
missing the support for 

evaluating path constraints 

Infeasible for RLC queries due to 
different path constraints, i.e., set 

vs sequence
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RLC Index

Vertex v Lout(v) Lin(v)

… … …

Lout(v): recording reachability information from v

Lin(v): recording reachability information to v 

Schema of Lout(v) or Lin(v): (u, mr), where mr is a 
succinct path label sequence, defined later on

E.g., if (u, mr) is in Lout(v), then there is a path from 
v to u with the succinct path label sequence is mr

Index structure
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V Lin(v) Lout(v)

10 ∅ (11, K), (12, KW), 
(14,H), (15, HD)

11 ∅ (11, K)

12 (11, K), (11, W) (11, K)

13 (11, WK), (11, K) (11, K), (12, KW)

14 ∅ ∅

15 (14, D) ∅

16 (11, WK), (11, K), 
(12, KW), (13, W)

∅

17 (14, DC), (15, C) ∅

18 (15, CD), (17, D) ∅

19 (12, KH), (13, KH), 
(13, WH), (16, H), 
(14, DC), (17, DC), 

(18, C)

∅

Q(A14, A19, (debits, credits)+)

True, because of (14, DC) in Lin(19)

Q(P10, P16, (knows, worksFor)+)

True, because of (12, KW) in Lout(10) and (12, KW) in Lin(16)

K: knows; W: worksFor; H: holds; 
D: debits; C: credits;

RLC Index



Challenge
how to build RLC Index 

Challenge C1: infinite edge-label 
sequences

Challenge C2: efficient indexing 
algorithm
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Indexing edge-label sequence

● Edge-label sequence is necessary

● Example

○ The sequence (debits, credits, debits, credits) is 
necessary for query (A14, A19, (debits, credits)+)

● Succinct representation: MR (minimum 
repeat) 

● Example

○ MR((debits, credits, debits, credits)) = (debits, 
credits)
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Indexing edge-label sequence

● Question: how many MRs from P11 to P13

○ Infinite due to the cycle with P11, P12, and P13

● Observation of real-world RLC queries

○ The length of recursive concatenation is bounded, 
i.e., (l1, …, lk)

+, where k is bounded

● Question: given k ≤ 2, for P11 and P13 

○ how many MRs of length up to 2

○ how to compute all the MRs
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KBS (kernel-based search)

● Intuition: generating kernels on the fly 
guiding the computation of MRs using kernels

● Example of kernel

○ Label sequence: (l1, l2, l1, l2, l1)

○ Kernel: (l1, l2)

● KBS: two-phase search

○ Kernel search

○ Kernel BFS 

Kernel
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Running example: KBS

Given k ≤ 2, computing all the MRs from P11 to P13 

(P11, worksFor, P12, knows, P13)

(P11, knows, P12, knows, P13)

Paths:

(P11, worksFor, P12, knows, P13, knows, P11, 
worksFor, P12, knows, P13)

(P11, worksFor, P12, knows, P13, knows, P11, 
knows, P12, knows, P13)

(P11, knows, P12, knows, P13, knows, P11, 
worksFor, P12, knows, P13)

(P11, knows, P12, knows, P13, knows, P11, knows, 
P12, knows, P13) 14



Foundations of KBS 

Sufficient and necessary conditions

Our conditions are correct

The results are complete

The proof is included in the full version on arXiv
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https://arxiv.org/abs/2203.08606


Lazy KBS vs eager KBS

Lazy KBS: computing kernels when the length of 
edge label sequence is 2k 

Getting valid kernels first, and then using the 
kernel to guide the search

Eager KBS: computing kernels when the length 
of edge label sequence is k 

Getting valid and invalid kernels first, and then 
using both of them to guide the search

Eager KBS is more efficient than lazy KBS, because the depth of its traversal is shorter

Eager KBS is also correct, because searches guided by invalid kernels will not reach target
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Challenge
how to have RLC index 

Challenge C1: infinite edge-label 
sequence

Challenge C2: efficient indexing 
algorithm
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Indexing algorithm

● Performing backward and forward KBS from each 
vertex

● Each KBS contains two phases 

○ kernel search 

○ kernel BFS

● During kernel search

○  computing and inserting MRs for each traversal step

● During kernel BFS

○ inserting MRs only if they are same as kernels
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v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1

v2

v3

v4

v5

v6

19

RLC indexing with k = 2



v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1

v2

v3 (v1, l2)

v4 (v1, l1)

v5 (v1, l1)

v6
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RLC indexing with k = 2



v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1 (v1, l2)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1))

v4 (v1, l1)

v5 (v1, l1)

v6
Kernel search terminates

Three kernels have been generated

1. (l1) with a set of frontier vertices {v4, v5, v2}

2. (l2)  with a set of frontier vertices {v3, v1}

3. (l2, l1) with a set of frontier vertices {v3, v2} 21

RLC indexing with k = 2



v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1))

v4 (v1, l1)

v5 (v1, l1)

v6

(l1)+

(l1)+

(l1)+
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RLC indexing with k = 2



v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1)),
(v1, l1)

v4 (v1, l1)

v5 (v1, l1)

v6

(l1)+
(l1)+ (l1)+

The BFS at v4 terminates because the incoming edge label l2 is 
an invalid state for kernel (l1)+

The BFS at v5 terminates because the only incoming neighbour 
with label l1, i.e., v2, has already been visited

(l1)+
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RLC indexing with k = 2



v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1)),
(v1, l1)

v4 (v1, l1)

v5 (v1, l1)

v6
The BFS at v1 terminates because incoming neighbours with l1, 
i.e., v4 and v5,  have already been visited

The BFS at v3 terminates because there is not incoming edges 
with label l1

The kernel BFS with (l1)+ terminates

(l1)+

(l1)+

24

RLC indexing with k = 2



Accessing order

● Accessing order: 

○ The order of vertices, in which the indexing 
algorithm is performed

● Intuition: 

○ Starting from the “middle”

● Example:

○ Less index entries with the order (v, u, w)

● Strategy: 

○ Sorting in (out-degree(v) + 1) x (in-degree(v) + 1)

u v w
l1 l1

Vertex v Lout(v) Lin(v)

u (v, l1) ∅

v ∅ ∅

w ∅ (v, l1)

The case with 
(v, u, w)

Vertex v Lout(v) Lin(v)

u (w, l1) ∅

v (w, l1) (u, l1)

w ∅ (u, l1)

The case with 
(u, w, v)
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Pruning rules

● Efficient indexing: 

○ When to skip index entries

○ When to terminate the KBS from a vertex 
early

● Intuition: 

○ Concatenating edge-label sequences of 
sub-paths as much as possible

● Three pruning rules for efficient indexing

○ PR1 and PR2: skipping redundant entries

○ PR3: terminating the search early

Pruning Rules
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Pruning Rules

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1), 
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2, 
l1)), (v1, l1)

(v1, l2), (v1, (l1, l2))

v4 (v1, l1) (v1, l2)

v5 (v1, l1) (v1, (l1, l2)), (v1, l1), 

v6 (v1, (l2, l1))

The snapshot of the RLC index after performing 
KBS from v1 

The forward KBS from v3 can visit v2, such that it tries to 
creat (v3, (l2, l1)) in Lin(v2)

However, there already exists (v1, (l2, l1)) in both Lout(v3) 
and Lin(v2), such that the index entry that needs to be 
inserted can be pruned
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Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1), 
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2, 
l1)), (v1, l1), (v3, 
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1), 
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1), 
(v3, (l2, l3))

The snapshot of the RLC index after performing 
KBS from v1 and v3

The backward KBS from v2 can visit v1, such that it tries to 
creat (v2, (l2, l1)) in Lout(v1)

However, aid(v2) > aid(v1), such that the index entry that 
needs to be inserted can be pruned

aid: accessing ID, e.g., aid(v3) = 2 
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Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

The backward KBS from v2 is transformed from kernel 
search to kernel BFS guided by (l2, l1)

+ after visiting v1

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1), 
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2, 
l1)), (v1, l1), (v3, 
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1), 
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1), 
(v3, (l2, l3))

The snapshot of the RLC index after performing 
KBS from v1 and v3

Kernel BFS
 starts

29



Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

The backward KBS from v2 is transformed from kernel 
search to kernel BFS guided by (l2, l1)

+ after visiting v1

When the kernel BFS visits v2, it tries to creat (v2, (l2, l1)) in 
Lout(v2)

However, there exists (v1, (l2, l1)) in both Lout(v2) and Lin(v2), 
i.e., PR1 can be triggered

Then, the kernel BFS can terminate

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1), 
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2, 
l1)), (v1, l1), (v3, 
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1), 
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1), 
(v3, (l2, l3))

The snapshot of the RLC index after performing 
KBS from v1 and v3

Kernel BFS
 starts
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Foundations of the indexing algorithm

The proofs are included in the full version on arXiv

No redundant index entries Correct and complete index
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https://arxiv.org/abs/2203.08606


Experimental setup

● Baselines
○ ETC (extended transitive closure): for every pairs 

of vertices, recording all the k-MRs
○ Online traversal: BFS and Bidirectional BFS

● 13 highly dense real-world graphs
● Workloads

○ 1000 true-queries and 1000 false-queries
● Parameter k

○ We start with k = 2, which is the real-world case
○ Then, we analyze the cases of k = 2, 3, 4

● Implementation: Java 11
● Setting

○ 8 VCPUs of 2.4GHz; 128GB main memory
○ Heap size of JVM: 120GB 

https://github.com/g-rpqs/rlc-index
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https://github.com/g-rpqs/rlc-index


Indexing performance

● Building ETC is not feasible

○ Building ETC timed out in 24 hours or run 
out of memory except for the AD graph

● Four-orders-of-magnitude improvement 

● Effectiveness of the pruning rules

○ Although SO requires more indexing time 
than LJ and WF,  index size of the former 
is smaller than those of the latter
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Query performance

Executing 1000 queries using the RLC index takes 1 ms except the WF graph that is 2 ms

Up to six-orders-of-magnitude improvement over BFS

Up to four-orders-of-magnitude improvement over bidirectional BFS
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Impact of k

Both indexing time and index size will increase when the value k increases

Query time also increases a bit due to the large index size

The number of path-constraints or kernels will exponentially grow as the increase of k
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Impact of graph characteristics
BA-graphs: 
Barabási–Albert model

ER-graphs:
Erdős–Rényi model

Degree-distribution:
  BA-graphs: skew
  ER-graphs: uniform
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Comparison with existing systems

● Systems

○ Commercial and open-sourced systems

○ Virtuoso (v7.2.6.3233), Sys1, and Sys2

● Dataset: the WN graph

○ |V|: 325K

○ |E|: 1.4M

● RLC index built with k = 3

○ 5.9 minutes

○ 821 megabytes

Q1: (a)+

Q2: (a, b)+

Q3: (a, b, c)+

Q4: a+b+

BEP indicates when the RLC index 
should be built 

The RLC index built for Q3 can 
also significantly improve the 
execution time of Q1, Q2, and 
Q4 as well
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Conclusion

● RLC queries
○ Reachability queries with a path constraint based on the Kleene plus over a concatenation of 

edge labels

● RLC index
○ Evaluating RLC queries through path concatenation

● Indexing algorithm
○ Backward and forward kernel-based search with pruning rules

● Experimental evaluation
○ RLC index can significantly improve query processing while reduce offline indexing overhead
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