
A Reachability Index for Recursive
Label-Concatenated Graph Queries
Chao Zhang1,*, Angela Bonifati1, Hugo Kapp2, Vlad Ioan Haprian2, and Jean-Pierre Lozi3

1Lyon 1 University, Lyon, France
2Oracle Labs, Zurich, Switzerland

3Inria, Paris, France

*Currently at the University of Waterloo

2

Person
External Entity
Account

Money laundering analysis:

Do accounts 14 and 19 have the
repeated outside-inside money
transferring pattern?

PATH out_in AS () -[:debits-]> () -[:credits]-> ()
SELECT *
FROM MATH (s) -/:out_in+/-> (t)
WHERE ID(s) = 14 AND ID(t) = 19

PGQL

An interleaved social and professional network

RLC (recursive label-concatenated) queries

● Path constraints
○ A concatenation of edge labels under the Kleene plus, i.e., (l1, …, lk)

+

● RLC query (s, t, L+), L = (l1, …, lk), checks
○ whether there is a path from vertex s to vertex t, and

○ whether the edge label sequence of the path matches the path constraint L+

● No constraint on path length
○ Paths selected by RLC query can have an arbitrary length

● Boolean query
○ Returns either True or False

3

RLC queries in mainstream graph processing systems

RLC queries cannot be expressed in

● Cypher of Neo4j (v4.3)

● GSQL of TigerGraph (v3.3)

4

RLC queries can be expressed in

● SPARQL 1.1, supported by Virtuoso,
Apache Jena, etc

● PGQL of Oracle PGX

● Gremlin, supported by TinkerPop-Enabled
Graph System, e.g., Amazon Neptune

RLC queries can be expressed in GQL or SQL/PGQ [Deu22]

[Deu22] A. Deutsch et al. Graph Pattern Matching in GQL and SQL/PGQ. SIGMOD Conference 2022: 2246-2258

RLC query processing

● Path semantics

○ Simple paths: non-repeated vertices or
edges

○ Arbitrary paths: vertices or edges can
repeat

● Building an FA (Finite Automata) based on the
path constraint

● Query processing: online traversal guided by an
FA, e.g., BFS guided by an FA

s0 s1start
debits

debits

credits

FA of (debits, credits)+

s2

5

RLC query processing

● Problem

○ real-world graphs are large

● RLC queries often timed out [Bon19]

● Building an index for online RLC queries

○ Fast query processing

○ Efficient index computation and storage

[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138

Music recommendation graph: http://sixdegrees.hu/last.fm/interactive_map.html

Real-world
graphs are
like this 👉

6

Related works: reachability indexes

Plain reachability indexes

● Queries: checking the existence of a path
only

● Indexes: Tree Cover, 2-Hop labeling, Dual
labeling, TFL, TOL, GRAIL, BFL, etc

Label-constrained reachability indexes

● Queries: checking the existence of a path
and whether the edge-label set of the path
is a subset of a given edge-label set

● Indexes: Landmark Index, P2H, etc

Infeasible for RLC queries due to
missing the support for

evaluating path constraints

Infeasible for RLC queries due to
different path constraints, i.e., set

vs sequence

7

RLC Index

Vertex v Lout(v) Lin(v)

… … …

Lout(v): recording reachability information from v

Lin(v): recording reachability information to v

Schema of Lout(v) or Lin(v): (u, mr), where mr is a
succinct path label sequence, defined later on

E.g., if (u, mr) is in Lout(v), then there is a path from
v to u with the succinct path label sequence is mr

Index structure

8

9

V Lin(v) Lout(v)

10 ∅ (11, K), (12, KW),
(14,H), (15, HD)

11 ∅ (11, K)

12 (11, K), (11, W) (11, K)

13 (11, WK), (11, K) (11, K), (12, KW)

14 ∅ ∅

15 (14, D) ∅

16 (11, WK), (11, K),
(12, KW), (13, W)

∅

17 (14, DC), (15, C) ∅

18 (15, CD), (17, D) ∅

19 (12, KH), (13, KH),
(13, WH), (16, H),
(14, DC), (17, DC),

(18, C)

∅

Q(A14, A19, (debits, credits)+)

True, because of (14, DC) in Lin(19)

Q(P10, P16, (knows, worksFor)+)

True, because of (12, KW) in Lout(10) and (12, KW) in Lin(16)

K: knows; W: worksFor; H: holds;
D: debits; C: credits;

RLC Index

Challenge
how to build RLC Index

Challenge C1: infinite edge-label
sequences

Challenge C2: efficient indexing
algorithm

10

Indexing edge-label sequence

● Edge-label sequence is necessary

● Example

○ The sequence (debits, credits, debits, credits) is
necessary for query (A14, A19, (debits, credits)+)

● Succinct representation: MR (minimum
repeat)

● Example

○ MR((debits, credits, debits, credits)) = (debits,
credits)

11

Indexing edge-label sequence

● Question: how many MRs from P11 to P13

○ Infinite due to the cycle with P11, P12, and P13

● Observation of real-world RLC queries

○ The length of recursive concatenation is bounded,
i.e., (l1, …, lk)

+, where k is bounded

● Question: given k ≤ 2, for P11 and P13

○ how many MRs of length up to 2

○ how to compute all the MRs

12

KBS (kernel-based search)

● Intuition: generating kernels on the fly
guiding the computation of MRs using kernels

● Example of kernel

○ Label sequence: (l1, l2, l1, l2, l1)

○ Kernel: (l1, l2)

● KBS: two-phase search

○ Kernel search

○ Kernel BFS

Kernel

13

Running example: KBS

Given k ≤ 2, computing all the MRs from P11 to P13

(P11, worksFor, P12, knows, P13)

(P11, knows, P12, knows, P13)

Paths:

(P11, worksFor, P12, knows, P13, knows, P11,
worksFor, P12, knows, P13)

(P11, worksFor, P12, knows, P13, knows, P11,
knows, P12, knows, P13)

(P11, knows, P12, knows, P13, knows, P11,
worksFor, P12, knows, P13)

(P11, knows, P12, knows, P13, knows, P11, knows,
P12, knows, P13) 14

Foundations of KBS

Sufficient and necessary conditions

Our conditions are correct

The results are complete

The proof is included in the full version on arXiv

15

https://arxiv.org/abs/2203.08606

Lazy KBS vs eager KBS

Lazy KBS: computing kernels when the length of
edge label sequence is 2k

Getting valid kernels first, and then using the
kernel to guide the search

Eager KBS: computing kernels when the length
of edge label sequence is k

Getting valid and invalid kernels first, and then
using both of them to guide the search

Eager KBS is more efficient than lazy KBS, because the depth of its traversal is shorter

Eager KBS is also correct, because searches guided by invalid kernels will not reach target

16

Challenge
how to have RLC index

Challenge C1: infinite edge-label
sequence

Challenge C2: efficient indexing
algorithm

17

Indexing algorithm

● Performing backward and forward KBS from each
vertex

● Each KBS contains two phases

○ kernel search

○ kernel BFS

● During kernel search

○ computing and inserting MRs for each traversal step

● During kernel BFS

○ inserting MRs only if they are same as kernels

18

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1

v2

v3

v4

v5

v6

19

RLC indexing with k = 2

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1

v2

v3 (v1, l2)

v4 (v1, l1)

v5 (v1, l1)

v6

20

RLC indexing with k = 2

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS V Lout(v) Lin(v)

v1 (v1, l2)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1))

v4 (v1, l1)

v5 (v1, l1)

v6
Kernel search terminates

Three kernels have been generated

1. (l1) with a set of frontier vertices {v4, v5, v2}

2. (l2) with a set of frontier vertices {v3, v1}

3. (l2, l1) with a set of frontier vertices {v3, v2} 21

RLC indexing with k = 2

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1))

v4 (v1, l1)

v5 (v1, l1)

v6

(l1)+

(l1)+

(l1)+

22

RLC indexing with k = 2

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1)),
(v1, l1)

v4 (v1, l1)

v5 (v1, l1)

v6

(l1)+
(l1)+ (l1)+

The BFS at v4 terminates because the incoming edge label l2 is
an invalid state for kernel (l1)+

The BFS at v5 terminates because the only incoming neighbour
with label l1, i.e., v2, has already been visited

(l1)+

23

RLC indexing with k = 2

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

Backward KBS from v1
Kernel search
Kernel BFS
The first kernel (l1)+ with a set of frontier vertices {v4, v5, v2}

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1)

v2 (v1, l1), (v1, (l2,l1))

v3 (v1, l2), (v1, (l2,l1)),
(v1, l1)

v4 (v1, l1)

v5 (v1, l1)

v6
The BFS at v1 terminates because incoming neighbours with l1,
i.e., v4 and v5, have already been visited

The BFS at v3 terminates because there is not incoming edges
with label l1

The kernel BFS with (l1)+ terminates

(l1)+

(l1)+

24

RLC indexing with k = 2

Accessing order

● Accessing order:

○ The order of vertices, in which the indexing
algorithm is performed

● Intuition:

○ Starting from the “middle”

● Example:

○ Less index entries with the order (v, u, w)

● Strategy:

○ Sorting in (out-degree(v) + 1) x (in-degree(v) + 1)

u v w
l1 l1

Vertex v Lout(v) Lin(v)

u (v, l1) ∅

v ∅ ∅

w ∅ (v, l1)

The case with
(v, u, w)

Vertex v Lout(v) Lin(v)

u (w, l1) ∅

v (w, l1) (u, l1)

w ∅ (u, l1)

The case with
(u, w, v)

25

Pruning rules

● Efficient indexing:

○ When to skip index entries

○ When to terminate the KBS from a vertex
early

● Intuition:

○ Concatenating edge-label sequences of
sub-paths as much as possible

● Three pruning rules for efficient indexing

○ PR1 and PR2: skipping redundant entries

○ PR3: terminating the search early

Pruning Rules

26

Pruning Rules

v4 v1 v5

v6 v3 v2

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1),
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2,
l1)), (v1, l1)

(v1, l2), (v1, (l1, l2))

v4 (v1, l1) (v1, l2)

v5 (v1, l1) (v1, (l1, l2)), (v1, l1),

v6 (v1, (l2, l1))

The snapshot of the RLC index after performing
KBS from v1

The forward KBS from v3 can visit v2, such that it tries to
creat (v3, (l2, l1)) in Lin(v2)

However, there already exists (v1, (l2, l1)) in both Lout(v3)
and Lin(v2), such that the index entry that needs to be
inserted can be pruned

27

Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1),
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2,
l1)), (v1, l1), (v3,
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1),
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1),
(v3, (l2, l3))

The snapshot of the RLC index after performing
KBS from v1 and v3

The backward KBS from v2 can visit v1, such that it tries to
creat (v2, (l2, l1)) in Lout(v1)

However, aid(v2) > aid(v1), such that the index entry that
needs to be inserted can be pruned

aid: accessing ID, e.g., aid(v3) = 2

28

Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

The backward KBS from v2 is transformed from kernel
search to kernel BFS guided by (l2, l1)

+ after visiting v1

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1),
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2,
l1)), (v1, l1), (v3,
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1),
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1),
(v3, (l2, l3))

The snapshot of the RLC index after performing
KBS from v1 and v3

Kernel BFS
 starts

29

Pruning Rules

v4
(4) v1

(1) v5
(5)

v6
(6) v3

(2) v2
(3

)

l1 l1

l1 l1

l1 l1l2 l2 l2 l2

l3

The backward KBS from v2 is transformed from kernel
search to kernel BFS guided by (l2, l1)

+ after visiting v1

When the kernel BFS visits v2, it tries to creat (v2, (l2, l1)) in
Lout(v2)

However, there exists (v1, (l2, l1)) in both Lout(v2) and Lin(v2),
i.e., PR1 can be triggered

Then, the kernel BFS can terminate

V Lout(v) Lin(v)

v1 (v1, l2), (v1, l1),
(v1, (l2, l1))

∅

v2 (v1, l1), (v1, (l2, l1)) (v1, l1), (v1, (l2, l1))

v3 (v1, l2), (v1, (l2,
l1)), (v1, l1), (v3,
(l1, l2))

(v1, l2), (v1, (l1, l2))

v4 (v1, l1), (v3, (l1, l2)) (v1, l2)

v5 (v1, l1), (v3, (l1, l2)) (v1, (l1, l2)), (v1, l1),
(v3, (l1, l2))

v6 ∅ (v1, (l2, l1)), (v3, l1),
(v3, (l2, l3))

The snapshot of the RLC index after performing
KBS from v1 and v3

Kernel BFS
 starts

30

Foundations of the indexing algorithm

The proofs are included in the full version on arXiv

No redundant index entries Correct and complete index

31

https://arxiv.org/abs/2203.08606

Experimental setup

● Baselines
○ ETC (extended transitive closure): for every pairs

of vertices, recording all the k-MRs
○ Online traversal: BFS and Bidirectional BFS

● 13 highly dense real-world graphs
● Workloads

○ 1000 true-queries and 1000 false-queries
● Parameter k

○ We start with k = 2, which is the real-world case
○ Then, we analyze the cases of k = 2, 3, 4

● Implementation: Java 11
● Setting

○ 8 VCPUs of 2.4GHz; 128GB main memory
○ Heap size of JVM: 120GB

https://github.com/g-rpqs/rlc-index

32

https://github.com/g-rpqs/rlc-index

Indexing performance

● Building ETC is not feasible

○ Building ETC timed out in 24 hours or run
out of memory except for the AD graph

● Four-orders-of-magnitude improvement

● Effectiveness of the pruning rules

○ Although SO requires more indexing time
than LJ and WF, index size of the former
is smaller than those of the latter

33

Query performance

Executing 1000 queries using the RLC index takes 1 ms except the WF graph that is 2 ms

Up to six-orders-of-magnitude improvement over BFS

Up to four-orders-of-magnitude improvement over bidirectional BFS

34

Impact of k

Both indexing time and index size will increase when the value k increases

Query time also increases a bit due to the large index size

The number of path-constraints or kernels will exponentially grow as the increase of k

35

Impact of graph characteristics
BA-graphs:
Barabási–Albert model

ER-graphs:
Erdős–Rényi model

Degree-distribution:
 BA-graphs: skew
 ER-graphs: uniform

36

Comparison with existing systems

● Systems

○ Commercial and open-sourced systems

○ Virtuoso (v7.2.6.3233), Sys1, and Sys2

● Dataset: the WN graph

○ |V|: 325K

○ |E|: 1.4M

● RLC index built with k = 3

○ 5.9 minutes

○ 821 megabytes

Q1: (a)+

Q2: (a, b)+

Q3: (a, b, c)+

Q4: a+b+

BEP indicates when the RLC index
should be built

The RLC index built for Q3 can
also significantly improve the
execution time of Q1, Q2, and
Q4 as well

37

Conclusion

● RLC queries
○ Reachability queries with a path constraint based on the Kleene plus over a concatenation of

edge labels

● RLC index
○ Evaluating RLC queries through path concatenation

● Indexing algorithm
○ Backward and forward kernel-based search with pruning rules

● Experimental evaluation
○ RLC index can significantly improve query processing while reduce offline indexing overhead

38

39

Thank you and Q&A

